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Abstract An analytical approach to solve plane static non-axisymmetric elasticity and thermoelasticity problems
for radially inhomogeneous hollow cylinders is presented. This approach is based upon the direct integration method
proposed by Vihak (Vigak). The essence of the method mentioned is in the integration of the original differential
equilibrium equations, which are independent of the stress–strain relations. This gives the opportunity to deduce the
relations, which are invariant with respect to various properties of the material, for the stress-tensor components.
From these relations each of the stress-tensor components have been expressed in terms of the governing one. A
solution of the equation for the governing stress in the form of Fourier series is presented. To determine the Fourier
coefficients, an integral Volterra-type equation is derived and solved by a simple iteration method with rapid con-
vergence. Other stress-tensor components are expressed through the obtained governing stress in the form of an
explicit functional dependence on force and thermal loadings.

Keywords Plane elasticity · Radially inhomogeneous hollow cylinder · Stresses · Thermoelasticity

1 Introduction

One of most important actual problems in the linear theories of elasticity and thermoelasticity is the solution of
the boundary-value problem for inhomogeneous (mechanical properties depend on the space coordinates) solids.
Such materials are widely used in modern technology. As an example, we mention functionally graded materials,
whose properties can be formed technologically during the manufacturing process with the goal of optimizing their
characteristics; composites, etc. It is well known that, if one does not take such kinds of dependence of the material
properties of real objects into account, this can cause huge errors in the computed stresses. At the same time, the
solution of the elasticity and thermoelasticity problem in a rather general formulation, under the prescribed heating
regime and force loading, is complicated.
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The question of solving elasticity problems for a homogeneous hollow cylinder is investigated in many pop-
ular monographs on the theories of elasticity and thermoelasticity. Some particular cases of force loadings given
on cylinder surfaces (as in the case of normal and tangential tractions uniformly distributed on inner and outer
surfaces; compression of a cylinder by two opposite concentrated forces or by uniform forces distributed on some
parts of cylinder’s boundary, etc.) are considered and widely discussed by Timoshenko and Goodier [1], Little [2],
Lurie [3], Papkovich [4], Sadd [5], and many others. Moreover, the references [1–5], and others give the general
solution in Michell’s form of the biharmonic equation for such problems. This solution contains enough degrees
of freedom to satisfy boundary conditions for different forms of regions under consideration. The complex-var-
iable approach for solving plane problems in homogeneous hollow cylinders was developed by Muskhelishvili
[6]. Thermal stresses in cylinders were investigated with the aid of the above-mentioned general solution of the
biharmonic equation by Noda, Hetnarski and Tanigawa [7]. The history of the methods developed to solve elasticity
and thermoelasticity problems, particularly in polar coordinates, has been discussed in detail in the extended survey
by Meleshko [8].

The solution to the plane elasticity problem for a cylinder with radial inhomogeneity in the event when the
modulus of elasticity only depends exponentially on the radial coordinate, but the Poisson ratio is assumed con-
stant, was constructed in [9] with the application of the Michell stress function. The authors of that paper also gave
recommendations about using their technique for more general cases of material inhomogeneity. The investigation
of thermal stresses in a rotating hollow orthotropic cylinder was presented in [10]. To solve the governing equations,
the authors applied the proposed numerical method by using a difference scheme. The numerical procedure was
used in [11] for finding the non-axisymmetric thermal stresses in a inhomogeneous hollow cylinder. The successive-
approximation method has been used in [12] for a three-dimensional stress and displacement analysis of transversely
loaded, laminated hollow cylinders and open cylindrical panels. In [13], the analytical solutions to plane elastic-
ity and thermoelasticity problems for a hollow cylinder, whose properties are expressed as a power of the radial
coordinate, have been presented in the form of complex Fourier series. The method for solving the inhomogeneous
cylinder in the form of a sectioned composite has been treated in [14].

On the basis of a direct integration method, Vihak [15] has developed the technique of solving a plane non-
axisymmetric thermoelasticity problem for a solid cylinder. The main feature of this approach is integration of
the equilibrium equations. Originally, these equations are in terms of stresses, and they do not depend on physi-
cal stress–strain relations, as well as material properties. At the same time, the general equilibrium relates all the
stress-tensor components. This makes it possible to express all the stresses in terms of the total stress. Moreover, the
integration of the equilibrium equations gives the possibility to deduce the integral equilibrium conditions for all of
the stress-tensor components [16]. Such conditions are invariant for different material properties, and they are also
necessary for solving the corresponding inverse problems [17] and for proving the accuracy of the calculations. The
compatibility equation in terms of strain for the plane non-axisymmetric case with the aid of the physical relations
is reduced to a corresponding equation in terms of stresses, which include the total stress only. Such a scheme for
the construction of the solution offers ample opportunities for its effective application to inhomogeneous solids. In
addition, this approach gives the possibility to avoid the application of biharmonic functions; this is of consider-
able advantage for inhomogeneous materials, because it does not cause an increase of the order of the governing
differential equations.

This paper presents the application of the direct integration method proposed by Vihak for solving plane static
non-axisymmetric problems in elasticity and thermoelasticity for a radially inhomogeneous hollow cylinder. Reduc-
ing the governing equation to a integral Volterra-type equation of the second kind, we have solved it by Fourier
transforms and applying a simple iteration method. The rapid convergence of the iteration process is demonstrated
by a numerical example. To determine the stress-tensor components in terms of the obtained total stress, we use the
relations between the stresses obtained on the basis of equilibrium equations, which are independent of the material
properties.

An analogous technique has been applied to one-dimensional elasticity and thermoelasticity problems for inho-
mogeneous and thermal-sensitive cylinders [18,19] and to plane problems for a strip that is inhomogeneous with
respect to width [20,21].
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2 Statement of the problem

Let us consider a hollow circular radially inhomogeneous cylinder subjected to external force loadings on its inner
and outer surfaces, as well as to a temperature field distributed within the cylinder. A cylindrical coordinate system
r, ϕ, z is used and the axis of the cylinder coincides with the z-axis. For plane strain, the elastic equilibrium of the
cylinder’s plane cross-section � = {(ρ, ϕ) ∈ [k; 1] × [0; 2π ]} is governed by [1,5,7]:
(a) equilibrium equations
1

ρ

∂

∂ρ

(
ρ2σr

)
+ ∂σrϕ

∂ϕ
= σ,

1

ρ

∂

∂ρ

(
ρ2σrϕ

)
+ ∂σϕ

∂ϕ
= 0, (1)

(b) the compatibility equation in terms of strains

∂2
(
ρerϕ

)

∂ρ∂ϕ
= ∂2er

∂ϕ2 + ∂

∂ρ

(
ρ2 ∂eϕ

∂ρ

)
− ρ

∂er

∂ρ
, (2)

(c) physical stress–strain relations

er = 1 − ν

2G
σr − ν

2G
σϕ − νe0 + α(1 + ν)T, eϕ = 1 − ν

2G
σϕ − ν

2G
σr − νe0 + α(1 + ν)T, erϕ = 1

G
σrϕ,

G = E

2(1 + ν)
, (3)

(d) Cauchy relations

er = 1

R2

∂ur

∂ρ
, eϕ = 1

R2ρ

(
ur + ∂uϕ

∂ϕ

)
, erϕ = 1

R2ρ

(
∂ur

∂ϕ
+ ρ

∂uϕ

∂ρ
− uϕ

)
. (4)

Here {ρ, k} = {r, R1}/R2; R1, R2 are the internal and external radii of the cylinder; σ j , σrϕ; e j , erϕ ( j = r, ϕ)

are the components of the stress-tensor and the strain-tensor, respectively; ur and uϕ denote the radial and angular
displacements; E = E(ρ), G = G(ρ) are the elasticity and shear modulus, respectively; ν = ν(ρ) is the Poisson
ratio, α = α(ρ) is the linear thermal-expansion coefficient; T (ρ, ϕ) is the given temperature field; and the total
stress σ is determined by two normal stresses:

σ = σr + σϕ. (5)

It is well known that, if the end sections of long cylinder are free, then, in general, ez = e0 = const �= 0 for the
case of plane strain [7]. Thus, the constant axial strain e0 can be determined from the condition∫

�

∫
ρσzdρdϕ = 0, (6)

and the axial component uz of the displacement vector is a linear function of the axial coordinate x = z/R2. If
the ends of the cylinder are confined between fixed smooth rigid planes, then e0 = uz = 0. In both cases one has
σ j z = e jz = 0(i = r, ϕ); the axial stress can be found from one of the strain–stress relations, namely,

σz = Ee0 + νσ − αET . (7)

We solve the system (1)–(4) by taking the external force loadings given at the ring’s boundary,

σr |ρ=k = −p1(ϕ), σr |ρ=1 = −p2(ϕ), σrϕ

∣∣
ρ=k = q1(ϕ), σrϕ

∣∣
ρ=1 = q2(ϕ), (8)

into account.
Using the physical relations (3) and equilibrium equations (1), we present the compatibility equation (2) in terms

of the stresses as follows:

	

(
1 − ν

2G
σ + α(1 + ν)T

)
= σr

2

d2

dρ2

(
1

G

)
+ σϕ

2ρ

d

dρ

(
1

G

)
+ e0

ρ

d

dρ

(
ρ

dν

dρ

)
, (9)

where

	 = 1

ρ

∂

∂ρ

(
ρ

∂

∂ρ

)
+ 1

ρ2

∂2

∂ϕ2 .
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3 Construction of the solution

To determine the stress-tensor components from the plane non-axisymmetric elasticity and thermoelasticity prob-
lems (1), (8), (9) in terms of the stresses for the ring region �, we apply the method proposed in [15]. Following
this method, we express the planar stresses in terms of the total stress (5). Applying corresponding differential
operations to the equilibrium equations (1), we deduce the three further equations

Dσr = ∂

∂ρ

(
ρ2σ

)
+ ρ

∂2σ

∂ϕ2 , Dσϕ = ρ
∂2

∂ρ2

(
ρ2σ

)
, Dσrϕ = −ρ

∂2

∂ρ∂ϕ
(ρσ), (10)

where

D = ∂

∂ρ

(
ρ

∂

∂ρ

(
ρ2
))

+ ρ
∂2

∂ϕ2 . (11)

Let us note that Eqs. (10) are equivalent to Eq. (1) for infinite regions under conditions of stresses that vanish at
infinity. But for bounded regions, as the ring region in our case, such an equivalence is possible only under some
additional conditions. It is easy to see that the above-mentioned additional conditions should ensure the validity of
the equilibrium equations on the region’s boundary. For solving the equilibrium and compatibility equations, (1)
and (9), respectively, we use the method proposed in [15]. The equations of (10) are used for simplification of the
solution construction process which expresses the stresses in terms of the governing function σ .

Following the general scheme proposed in [15], we represent the functions as Fourier series:
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

σr

σϕ

σz

σ

T
p j

σrϕ

q j

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=
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⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

R0(ρ)


0(ρ)

Z0(ρ)
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T0(ρ)

p j0

S0(ρ)
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⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

+
∞∑

n=1
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
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1
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n (ρ)
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n (ρ)
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jn

S2
n (ρ)
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jn

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

cos nϕ +
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σ 2
n (ρ)

T 2
n (ρ)

p2
jn

S1
n(ρ)

q1
jn

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

sin nϕ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, j = 1, 2, (12)

where [22]

f0 = 1

2π

∫ 2π

0
f dϕ, fc = 1

π

∫ 2π

0
f cos nϕdϕ, fs = 1

π

∫ 2π

0
f sin nϕdϕ, (13)

where f is an element of the left-hand column in (12), f0, fc, fs correspond to terms of the series with subscript
“0” and coefficients of cos nϕ and sin nϕ, respectively. Because in (1) the normal stresses are related to the shear
stress by the derivative with respect to the angular coordinate ϕ, we use inverse superscripts for the shear stress and
tractions in (12).

By substitution of expressions (12) in (1), (9), (10) and conditions (8) or applying corresponding finite integral
transformations prescribed by (13), we deduce the sets of ODEs and boundary conditions to determine the required
terms of stress expansions into Fourier series (12). We shall consider below the solution construction for terms
of series (12) with subscript “0” (so-called elementary solutions [1,3]) and for those with superscripts “1”, “2”
separately.

3.1 Construction of elementary solutions

From (1), (5), (10) the equations

d

dρ

(
ρ2 R0

) = ρσ0,
d

dρ

(
ρ2S0

) = 0, σ0 = R0 + 
0,

D0 R0 = d

dρ
(ρ2σ0), D0
0 = ρ

d2

dρ2 (ρ2σ0), D0S0 = 0,

(14)
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follow for the elementary parts of the stress expansions (12). Here D0 is obtained from D operator (11) by exclusion
of the derivative with respect to ϕ. The elementary parts of the radial and shear stresses should satisfy the following
boundary conditions:

R0(k) = −p10, R0(1) = −p20, S0(k) = q10, S0(1) = q20, (15)

which follow from (8) and (12). In a similar manner, we deduce the key governing equation

d

dρ

(
ρ

d

dρ

(
1 − ν

2G
σ0 + α(1 + ν)T0

))
= ρR0

2

d2

dρ2

(
1

G

)
+ 
0

2

d

dρ

(
1

G

)
+ e0

d

dρ

(
ρ

dν

dρ

)
(16)

on the basis of the compatibility equation (9) in terms of stresses.
It is very simple to find the elementary solution for the shear stresses. From the corresponding equations (14)

and last two conditions (15), we conjecture the following solution

S0 = k2

ρ2 q10 = 1

ρ2 q20 (17)

and the conditions

q20 = k2q10 or
∫ 2π

0
q2dϕ = k2

∫ 2π

0
q1dϕ. (18)

This solution is discussed in many textbooks on the theory of elasticity [1,4], and others. The solution (17) and
conditions (18) correspond to the axisymmetric case, when the shear tractions given on one of the ring’s boundaries
are balanced by shear tractions prescribed on the other. Also, we conclude that the shear stresses in a radially
inhomogeneous cylinder are independent of the material properties for the axisymmetric (one-dimensional) case.

The solution of the system of equations (14) with the first two conditions (15) for the radial stress can be presented
in the form

ρ2 R0 = −k2 p10 +
∫ ρ

k
ησ0(η)dη. (19)

By substitution of ρ = 1 in the last expression and taking the second condition (15) into account, we obtain the
integral condition
∫ 1

k
ρσ0(ρ)dρ = k2 p10 − p20 (20)

for the elementary part of total stress.
Using integration by parts, we find the solution

σ0 = 2G

1 − ν

[
C0 + νe0 − α(1 + ν)T0 + 1

2

∫ ρ

k

d

dη

(
1

G(η)

)
R0(η)dη

]
(21)

of Eq. (16), where C0 is a constant of integration, which can be found with the aid of condition (20), and e0 can be
obtained from (6) and (7) if the ends of the cylinder are free, or e0 = 0 for the case of fixed ends. After substitution
of expression (19) in (21), we can find the elementary part of the total stress in the form

σ0 = 2G

1 − ν

[
C0 + νe0 − α(1 + ν)T0 − P0 + 1

2

∫ ρ

k

1

η2

d

dη

(
1

G(η)

)∫ η

k
ξσ0(ξ)dξdη

]
, (22)

where

P0 = k2 p10

2

∫ ρ

k

1

η2

d

dη

(
1

G(η)

)
dη.

By changing the order of integration in integral (22), we reduce this expression to a Volterra-type integral equation

σ0 = 2G

1 − ν

[
C0 + νe0 − α(1 + ν)T0 − P0 + 1

2

∫ ρ

k
ξσ0(ξ)K0(ρ, ξ)dξ

]
. (23)
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Here

K0(ρ, ξ) =
∫ ρ

ξ

1

η2

d

dη

(
1

G(η)

)
dη.

We note that (23) agrees with the analogous expression for a one-dimensional problem concerning a radially
inhomogeneous cylinder, presented in [18,19]. The authors of the cited works have proposed to solve the integral
equation (23) with the aid of a simple iteration method. An analogous procedure is used in [20,21]. According to
this, we construct the solution of (23) as the limit

σ0 = lim
m→∞ σ

(m)
0

of the approximations

σ
(m)
0 = 2G

1 − ν

[
C (m)

0 + νe(m)
0 − α(1 + ν)T0 − P0 + 1

2

∫ ρ

k
ξσ

(m−1)
0 (ξ)K0(ρ, ξ)dξ

]
, (24)

where m = 1, 2, . . ., σ
(0)
0 ≡ 0. In the case of free ends of the cylinder, the constants C (m)

0 , e(m)
0 can be found from

conditions (6), (7), (20) in the form

C (m)
0 = 1

γ0

[
I1b(m)

1 − I2b(m)
2

]
, e(m)

0 = 1

γ0

[
I1b(m)

2 − I2b(m)
1

]
,

where

b(m)
1 = k2 p10 − p20 + 2

∫ 1

k

ρG

1 − ν
(α(1 + ν)T0 + P0) dρ −

∫ 1

k

ρG

1 − ν

∫ ρ

k
ξσ

(m−1)
0 (ξ)K0(ρ, ξ)dξ dρ,

b(m)
2 =

∫ 1

k
ραET0 dρ + 2

∫ 1

k

ρνG

1 − ν
(α(1 + ν)T0 + P0) dρ −

∫ 1

k

ρνG

1 − ν

∫ ρ

k
ξσ

(m−1)
0 (ξ)K0(ρ, ξ)dξdρ,

γ0 = 2
(

I 2
1 − I 2

2

)
= G∗E1, E1 =

∫ 1

k

ρE

1 − ν
dρ, G∗ =

∫ 1

k
ρGdρ, I1 =

∫ 1

k

ρG

1 − ν
dρ, I2 =

∫ 1

k

ρνG

1 − ν
dρ.

If the ends are clamped, then e(m)
0 = 0 in (24), and the expression

C (m)
0 = b(m)

1

2I1

follows from (20).
After having found the elementary part of the total stress, we determine R0 by (19). The elementary constituent

of the angular stress 
0 can be calculated by means of the third equation of (14)


0 = σ0 − R0. (25)

By taking expression (19) into account, it is easy to show that (25) is also the solution to the fifth equation of (14).

3.2 Angle-dependent parts of the solution

Now we apply the last two integral transforms (13) to Eqs. (1), (5), (9) and (10), and the boundary conditions (8),
thus obtaining the equations

1

ρ

d

dρ

(
ρ2 Ri

n

)− (−1)i nSi
n = σ i

n,
1

ρ

d

dρ

(
ρ2Si

n

)+ (−1)i n
i
n = 0, σ i

n = Ri
n + 
i

n,

Dn Ri
n = d

dρ

(
ρ2σ i

n

)− n2ρσ i
n, Dn
i

n = ρ
d2

dρ2

(
ρ2σ i

n

)
, Dn Si

n = −(−1)i nρ
d

dρ

(
ρσ i

n

)
,

(26)

	n

[
1 − ν

2G
σ i

n + α(1 + ν)T i
n

]
= Ri

n

2

d2

dρ2

(
1

G

)
+ 
i

n

2ρ

d

dρ

(
1

G

)
(27)
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and boundary conditions

Ri
n(k) = −pi

1n, Ri
n(1) = −pi

2n, Si
n(k) = qi

1n, Si
n(1) = qi

2n, (28)

where Dn = d

dρ

(
ρ

d

dρ

(
ρ2
))− n2ρ, 	n = 1

ρ

d

dρ

(
ρ

d

dρ

)
− n2

ρ2 , i = 1, 2.

Following a technique proposed by Vihak [15], from the set of equations (26) and conditions (28) we get
expressions for the stress-tensor components:

Si
n = 1

2ρ2

[
k2χ+

n (ρ, k)qi
1n + (−1)i k2χ−

n (ρ, k)pi
1n − (−1)i

∫ ρ

k
ησ i

n(η)
(
nχ+

n (ρ, η) + χ−
n (ρ, η)

)
dη

]
,

Ri
n = −1

2ρ2

[
(−1)i k2χ−

n (ρ, k)qi
1n + k2χ+

n (ρ, k)pi
1n −

∫ ρ

k
ησ i

n(η)
(
nχ−

n (ρ, η) + χ+
n (ρ, η)

)
dη

]
, (29)


i
n = 1

2ρ2

[
(−1)i k2χ−

n (ρ, k)qi
1n + k2χ+

n (ρ, k)pi
1n −

∫ ρ

k
ησ i

n(η)
(
nχ−

n (ρ, η) + χ+
n (ρ, η)

)
dη

]
+ σ i

n

in terms of the total stress, as well as the integral conditions

(n + 1)

∫ 1

k
ρn+1σ i

ndρ = kn+2 pi
1n − pi

2n + (−1)i
(
kn+2qi

1n − qi
2n

)
,

(n − 1)

∫ 1

k
ρ−n+1σ i

ndρ = pi
2n − k−n+2 pi

1n + (−1)i
(
k−n+2qi

1n − qi
2n

)
.

(30)

Here i = 1, 2; χ+
n (a, b) = a−nbn + anb−n, χ−

n (a, b) = a−nbn − anb−n . We shall use (30) to determine the
unknowns in the expressions for the total-stress coefficients σ i

n(i = 1, 2), which will be found from (27).
Note that the second condition (30) is degenerate for n = 1, making it impossible to use this condition for

the elimination of the multivalued constituents in the expression for the total-stress coefficients. For this case, to
complete the set of conditions for the determination of the constants of integration, we shall deduce one further
condition below. However, by assuming n = 1 in the second condition (30), we get the necessary conditions

kpi
11 − pi

21 = (−1)i
(

kqi
11 − qi

21

)
, i = 1, 2,

which, with the aid of (13), take the form

k
∫ 2π

0
(p1 + q1) cos ϕ dϕ =

∫ 2π

0
(p2 + q2) cos ϕ dϕ, k

∫ 2π

0
(p1 − q1) sin ϕ dϕ =

∫ 2π

0
(p2 − q2) sin ϕ dϕ (31)

in terms of the external force loadings. As is easy to see, the conditions (31) express the equilibrium of the external
forces acting on the ring in projections onto the axes of Cartesian coordinates [1, p. 134].

The solution of Eq. (27) can be given as follows:

1 − ν

2G
σ i

n + α(1 + ν)T i
n = Ai

nρ−n + Bi
nρ

n − kχ−
n (ρ, k)pi

1n

4n

d

dρ

(
1

G

)∣∣∣∣
ρ=k

+1

4

∫ ρ

k

d

dη

(
1

G(η)

)
Ri

n(η)χ+
n (ρ, η)dη

+ 1

4n

∫ ρ

k

d

dη

(
1

G(η)

)
χ−

n (ρ, η)

η

d

dη

(
η2 Ri

n(η)
)

dη

− 1

4n

∫ ρ

k

d

dη

(
1

G(η)

)
χ−

n (ρ, η)σ i
n(η)dη, (32)

where Ai
n, Bi

n(i = 1, 2; n = 1, 2, . . .) denote constants of integration.
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Substituting expression (29) for Ri
n in (32) and using integration by parts, we find

1 − ν

2G
σ i

n + α(1 + ν)T i
n = Ai

nρ−n + Bi
nρ

n + Pi
n + Qi

n + 1

4

∫ ρ

k

1

η2

d

dη

(
1

G(η)

)

×
∫ η

k
ξσ i

n(ξ)
(
(n + 1)ρnξnη−2n − (n − 1)ρ−nξ−nη2n

)
dη. (33)

Here i = 1, 2; n = 1, 2, . . .;

Pi
n = −kpi

1n

4

(
χ−

n (ρ, k)

n

d

dρ

(
1

G

)∣∣∣∣
ρ=k

+ k
∫ ρ

k

d

dη

(
1

G(η)

)(
k−nρ−nη2(n−1) + knρnη−2(n+1)

)
dη

)
,

Qi
n = (−1)i k2qi

1n

4

∫ ρ

k

d

dη

(
1

G(η)

)(
k−nρ−nη2(n−1) − knρnη−2(n+1)

)
dη.

The Volterra-type integral equation,

σ i
n = 2G

1 − ν

[
Ai

nρ−n + Bi
nρn + Pi

n + Qi
n − α(1 + ν)T i

n + 1

4

∫ ρ

k
ξσ i

n(ξ)Kn(ρ, ξ)dξ

]
, (34)

follows from (33) by means of changing the order of intergation. Here the kernel of the integral is given by

Kn(ρ, ξ) =
∫ ρ

ξ

1

η2

d

dη

(
1

G(η)

)(
(n + 1)ρnξnη−2n − (n − 1)ρ−nξ−nη2n

)
dη.

To solve the integral equation (34), we use the scheme given above for the elementary solutions. Thus, the total-stress
coefficients can be found as the limit

σ i
n = lim

m→∞ σ i(m)
n

of the iterations

σ i(m)
n = 2G

1 − ν

[
Ai(m)

n ρ−n + Bi(m)
n ρn + Pi

n + Qi
n − α(1 + ν)T i

n + 1

4

∫ ρ

k
ξσ i(m−1)

n (ξ)Kn(ρ, ξ)dξ

]
, (35)

where m = 1, 2, . . . ; σ
i(0)
n ≡ 0; i = 1, 2; n = 1, 2, . . .. For n > 1 the constants Ai(m)

n , Bi(m)
n take the form

Ai(m)
n = 1

γn

[
I1 Fi(m)

1n − I +
n Fi(m)

2n

]
, Bi(m)

n = 1

γn

[
I1 Fi(m)

2n − I −
n Fi(m)

1n

]
,

which follow from conditions (30). Here

Fi(m)
1n = 1

2(n + 1)

[
kn+2 pi

1n − pi
2n + (−1)i

(
kn+2qi

1n − qi
2n

)]

−
∫ 1

k

ρn+1G

1 − ν

[
Pi

n + Qi
n − α(1 + ν)T i

n + 1

4

∫ ρ

k
ξσ i(m−1)

n (ξ)Kn(ρ, ξ)dξ

]
dρ,

Fi(m)
2n = 1

2(n − 1)

[
−k−n+2 pi

1n + pi
2n + (−1)i

(
k−n+2qi

1n − qi
2n

)]

−
∫ 1

k

ρ−n+1G

1 − ν

[
Pi

n + Qi
n − α(1 + ν)T i

n + 1

4

∫ ρ

k
ξσ i(m−1)

n (ξ)Kn(ρ, ξ)dξ

]
dρ,

γn = I 2
1 − I −

n I +
n , I1 =

∫ 1

k

ρG

1 − ν
dρ, I −

n =
∫ 1

k

ρ1−2nG

1 − ν
dρ, I +

n =
∫ 1

k

ρ1+2nG

1 − ν
dρ.

As additional conditions for determining the constants Ai(m)
1 , Bi(m)

1 , we shall use the so-called integral compatibility
conditions
∫ 2π

0

[
ker (k) + er (1) − k2 ∂eϕ

∂ρ

∣∣∣∣
ρ=k

− ∂eϕ

∂ρ

∣∣∣∣
ρ=1

]{
sin ϕ

cos ϕ

}
dϕ =

∫ 2π

0

[
kerϕ(k) + erϕ(1)

] { cos ϕ

− sin ϕ

}
dϕ, (36)
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deduced in [23] on the basis of the integration of the geometric Cauchy relations (4). Here we denote er (k) =
er (k, ϕ), etc. for the sake of brevity. Using the relations (3), the expressions for the stresses (29), (34), and the
formulas (13), on the basis of the conditions (36), we derive the expressions

4Ai(m)
1 = (−1)i qi

21

2G(1)
+ (−1)i kqi

11

2

[
2

G(k)
− 1

G(1)
+ 1 − k2

2

d

dρ

(
1

G(ρ)

)∣∣∣∣
ρ=1

]

+kpi
11

2

[
1

G(1)
− 2

G(k)
+ 2k

d

dρ

(
1

G(ρ)

)∣∣∣∣
ρ=k

− 1 + k2

2

d

dρ

(
1

G(ρ)

)∣∣∣∣
ρ=1

]

− pi
21

2

[
1

G(ρ)
− d

dρ

(
1

G(ρ)

)]

ρ=1
+ 1

2

d

dρ

(
1

G(ρ)

)∣∣∣∣
ρ=1

∫ 1

k
ρ2σ

i(m−1)
1 dρ, i = 1, 2. (37)

The expressions for the constants Bi(m)
1

4I3 Bi(m)
1 = −4I1 Ai(m)

1 + k3 pi
11 − pi

21 + (−1)i
(

k3qi
11 − qi

21

)

−4
∫ 1

k

ρ2G

1 − ν

{
Pi

1 + Qi
1 − α(1 + ν)T i

1 + 1

4

∫ ρ

k
ξσ

i(m−1)
1 (ξ)K1(ρ, ξ)dξ

}
dρ

follow from the first condition of (30). Here i = 1, 2; m = 1, 2, . . .;

I3 =
∫ 1

k

ρ3G

1 − ν
dρ;

and Ai(m)
1 is presented by (37).

With the determination of the constants Ai(m)
1 , Bi(m)

1 , we have completed the construction of the solution to
the stated plane problems of elasticity and thermoelasticity for a hollow circular cylinder consisting of radially
inhomogeneous material.

After having found the planar stress-tensor components, we find the terms Z0, Zi
n(i = 1, 2) of the expansions

(12) of the axial stress into Fourier series from formula (7). We point out that the axial stress satisfies condition (6).
But it is easy to see that, in general, the cylinder is under the action of bending moments applied on its ends. To
release the cylinder from such reactive moments, it is necessary to apply moments of the same magnitude but of
opposite direction on its ends. Such moments can be found easily with the aid of the technique developed in [15].
It is necessary to take this into account for a correct determination of the axial stress.

It is easy to conclude from (24), (35) that these formulas give the exact solutions already for m = 1, if G is a
constant.

3.3 Static temperature field

The coefficients (12) of the static temperature satisfying the equation

	T = 0,

can be found in the form

T0 = a0 + b0 ln ρ, T i
n = ai

nρn + bi
nρ−n, i = 1, 2; n = 1, 2, . . . . (38)

The constants a0, b0, ai
n, bi

n have to be determined from boundary conditions prescribed for the temperature field.
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4 Numerical examples and discussion

4.1 Example 1

Let us consider external tractions (8) of the form

p1 = q1 = q2 = 0, p2 =
{

p, ϕ ∈ V,

0, ϕ /∈ V,
(39)

where V =
[

(2l+1)π
2 − �,

(2l+1)π
2 + �

]
; l = 0, 1; p = const;� ∈ (

0, π
2

]
. The temperature field is assumed to

be T = 0. This example of uniform pressure given on two equal but opposite parts of the outer boundary of the
ring � has been widely discussed [2,4] for homogeneous materials. The case of a concentrated force acting on
polar points of the outer boundary of the homogeneous ring (we can approximate this type of force loadings by
assuming � to be small in our example) has been studied theoretically [1–5], as well as experimentally, by methods
of photoelasticity [24].

We give a calculation of the stresses assuming that the elasticity modulus varies exponentially, as E(ρ) =
E0eβρ (E0, β = const), and ν = ν0 = const. According to the expression for the shear modulus (3), the latter
takes the same form as the elasticity modulus, namely, G(ρ) = G0eβρ , where G0 = E0/(2(1 + ν0)) = const. It
should be noted that the case β = 0 corresponds to homogeneous properties of the material. We have studied the
stress distributions in ring � for β = −2; 0; 2, using the Poisson ratio ν0 = 0.3; the inner radius of the cylinder is
k = 0.5; the angle is � = π

4 . We also assume that the cylinder’s ends are rigidly clamped; thus, e0 = 0.
Figure 1 shows how the computed dimensionless total stress σ/p depends on the radial coordinate with respect

to cylinder thickness in the angular cross-sections ϕ = 0 and ϕ = π
2 . The specified angular cross-sections ϕ = π

2
and ϕ = 0 are the symmetry axis of the ring’s sectors corresponding to the loaded and free parts, respectively, of
the outer boundary ρ = 1. We observe that the coordinate dependence of the Young’s modulus of the material has
an enormous effect on the distribution of the total stress.

The calculations show a rapid convergence of the iterative scheme described above. Table 1 presents the maxi-

mum relative error, εm = maxρ∈[k,1]
|σ (m)

0 −σ
(m−1)
0 |

|σ (m−1)
0 | × 100(%), of the iterations (24) for σ

(m)
0 in the case of loading

(39). From this we conclude that, to obtain a high degree of accuracy, it is enough to complete three or four iterations
(24) for the elementary part of the total stress. An analogous investigation for iterations (35) shows that, to obtain
an accuracy to within 0.001 in iterations σ

(m)
n for 1 ≤ n ≤ 15, it is sufficient to take three (m = 3) iterations (35);

Fig. 1 ρ-Dependence of the dimensionless total stress in the
some angular cross-sections for different cases of material
inhomogeneity

Fig. 2 The influence of material inhomogeneity on the
radial stress
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Table 1 The maximum
relative error of the
iterations σ

(m)
0

εm (%)

m β = 2 β = −2

2 15.31 24.53
3 1.40 2.11
4 0.13 0.21
5 0.01 0.02

Fig. 3 ρ-Dependence of the angular stress Fig. 4 Distribution of the shear stresses on the mid-surface
of the cylinder

the second iteration gives the mentioned accuracy for 15 < n. The results presented below have been computed by
taking 140 terms in the series (12) into account.

Figure 2 depicts the distribution of the radial stress along the thickness of the cylinder in the same cross-sections
as in the previous figure. We observe that this stress, calculated by the corresponding formulas (19), (29) under a
known total stress, satisfies the boundary conditions exactly. The calculations show that the intensity of this stress
increases with decreasing cylinder thickness. The radial stress takes positive values near the inner boundary in the
sectors ϕ ∈ V corresponding to the loaded parts of the outer boundary. These positive values of the stresses, as well
as their distribution zones, increase with decreasing cylinder thickness. In the sectors corresponding to the unloaded
parts of outer boundary, the radial stress takes maximal negative values near the inner boundary too. Finally, we
emphasize the essential influence of material inhomogeneity on the distribution of the radial stresses.

The influence of the radial variation of Young’s modulus on the distribution of the dimensionless angular stress
is shown in Fig. 3. As can be seen, the maximum (positive in loaded sectors and negative elsewhere) values of this
stress are located on the inner boundary. This stress intensity increases with decreasing cylinder thickness. More-
over, the absolute values of the angular stresses exceed the corresponding values of the radial stress. It is known
that the peaks of the shear stresses are located in the neighbourhood of singular points of the normal tractions [6].
Figure 4 demonstrates the dimensionless shear stress σrϕ/p on the mid-surface, ρ = (1 + k)/2 = 0.75, of the
cylinder.

4.2 Example 2

Let us consider now an example of computing the thermal stresses caused by a temperature field T only (in the
absence of external force loadings on the inner and outer surfaces of the cylinder). We find the constants in the
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Fig. 5 Distribution of the dimensionless temperature
(41) in the ring �

Fig. 6 Distribution of the dimensionless radial thermal
stresses along the radius of the cylinder in the cross-sections
ϕ = 0; π

2 (k = 0.5)

Fig. 7 The dimensionless angular thermal stresses in the cross-
sections ϕ = 0; π

2 (k = 0.5)

Fig. 8 Distribution of the shear thermal stresses on the mid-
surface ρ = 0.75 of the cylinder (k = 0.5)

expressions (38) from the boundary conditions:

T (k, ϕ) = τ = const, T (1, ϕ) = τ (1 + cos 2ϕ) . (40)

The temperature (12) with the coefficients (38) subjected to the boundary conditions (40) takes the form

T

τ
= 1 + ρ2 − k4ρ−2

1 − k4 cos 2ϕ. (41)

Figure 5 depicts the distribution of the dimensionless temperature (41) for an inner radius k = 0.5. The cal-
culations of the thermal stresses caused by the temperature (41) are obtained under the assumption that α =
α0eβρ, {G, ν, E, α0, β} = const. As was mentioned above, the formulas (24) and (35) express the exact solutions
already for m = 1 in this case.

It is easy to prove [25] that there are no stresses distributed in region � if β = 0 (homogeneous material) for the
considered example. But for a variable coefficient of linear thermal expansion (β �= 0) the temperature field (41)
causes stresses in �. Figures 6–8 show the computed dimensionless thermal stresses (1 − ν){σr , σϕ, σrϕ}/(α0 Eτ),
respectively, for the parameter values β = 2 and β = −2. We observe the essential influence of the radial dependence
of the coefficient α on the distribution of the thermal stresses.
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5 Conclusions

To develop a technique for the solution of static plane non-axisymmetric elasticity and thermoelasticity problems
for a radially inhomogeneous cylinder, we have used Vihak’s method for solving the analogous problem for a
homogeneous solid cylinder. Due to the derived relations between the stress-tensor components, we can simplify
the calculation of the stress state in inhomogeneous cylinders considerably, because these relations do not depend
on the material properties.

The rapid convergence of the iterations can be explained by the fact that, in the particular case of a homogeneous
material, the initial approximation gives the exact analytical solution of the corresponding elasticity or thermo-
elasticity problem. Because the presented technique shows a rapid convergence of the iterative process, namely,
the second or third iteration can be accepted with ‘engineering’ accuracy, it is easy to complete the approximate
analytical expression for the total stress by taking two or three iterations only. This expression promises to be quite
useful for practical calculations and analytical investigations.
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